ЗАНЯТИЕ 19. СТРОЙ СТРАТЕГИЮ!

Учебное содержание

Предметные цели

- 1. Познакомить с понятием выигрышной стратегии в математических играх.
- 2. Формировать представления об использовании дерева возможностей для доказательства верного выбора стратегии.
- 3. Формировать представления о выигрышных и проигрышных позициях в математических играх.

Задача-ключ

В корзине лежит 6 слив. Петя и Валя по очереди достают сливы из корзины (начинает Петя). За один раз можно достать 1, 2 или 3 сливы. Выигрывает тот, кто достал последнюю сливу. У кого из ребят есть выигрышная стратегия?

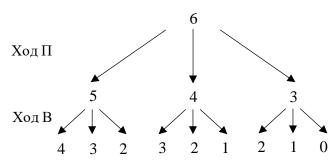
Решение

Опишем стратегию, по которой первый игрок (Петя) может выиграть вне зависимости от игры второго игрока (Вали). Пусть Петя своим первым ходом достанет две сливы. Тогда в корзине останется 4 сливы, а после хода Вали может остаться 3, 2 или 1 слива. Тогда своим вторым ходом Петя может достать все оставшиеся сливы из корзины и выиграть.

Запись на доске и в рабочей тетради

Стратегия Пети: взять 2 сливы, а забрать оставшиеся после хода Вали *Обоснование стратегии:*

 $\Pi: 6-2=4$


B: 4 - (1, 2, 3) = (3, 2, 1)

 Π : (3, 2, 1) – (3, 2, 1) = 0 (выигрыш)

Ответ: у первого игрока.

Путь к решению

Изобразим дерево возможностей для первых двух ходов. В вершинах дерева будем изображать количество слив, оставшееся после соответствующего хода.

Заметим, что если Петя оставит Вале 3 сливы, то та выиграет своим ходом. Если Петя оставит 5 слив, то игра продолжится после хода Вали. Если Петя оставит Вале 4 сливы, то при любых его ходах останется то число слив, которое может достать Петя за один раз. Значит, выигрышная стратегия есть у Пети (эта стратегия и описана в решении задачи).

Советы по поиску стратегий в математических играх

Выигрышной стратегией для игрока называется последовательность действий, которая приводит к его выигрышу вне зависимости от игры соперника.

- 1. Для того чтобы найти выигрышную стратегию и обосновать ее, можно воспользоваться перебором вариантов. Это удобно, если вариантов немного.
- 2. Перебор можно провести с помощью дерева возможностей.

Вопросы для построения подводящего диалога

- 1. Что меняется за ход в этой игре?
- 2. Какая позиция может быть в игре после первого хода? А после второго?
- 3. Из каких позиций можно выиграть за один ход?

Как проверить

Для проверки правильности выбранной стратегии за некоторого игрока можно провести полный перебор вариантов ходов другого игрока.

Комментарий к занятию

В этом занятии Петя и Валя играют в математические игры. Они ходят по очереди, причем Петя всегда первый (Π), а Валя — вторая (B).

Основные задания

1. Сложение (3 мин)

Записано число 1. Двое по очереди пишут новое число, увеличивая записанное перед этим на 1, 2, 3, 4 или 5. Выигрывает тот, кто напишет число 10. У кого из двоих играющих есть выигрышная стратегия?

Подсказка

Подумай, какое число должно быть записано на доске, чтобы можно было выиграть за один ход.

Решение

Пусть Π своим первым ходом прибавит к числу на доске 3. Сумма равна 4. После хода B на доске может оказаться любое число от 5 до 9 включительно, а значит, Π сможет добавить 5, 4, 3, 2 или 1 и выиграть.

Запись на доске и в рабочей тетради

Стратегия Π : первым ходом записать число 4, а дальше дополнить число, записанное B, до 10 *Обоснование стратегии*:

$$\Pi: 1 + 3 = 4$$

B:
$$4 + (1, 2, 3, 4, 5) = (5, 6, 7, 8, 9)$$

$$\Pi$$
: (5, 6, 7, 8, 9) + (5, 4, 3, 2, 1) = 10 (выигрыш)

Ответ: у первого игрока.

Путь к решению

 Π сможет выиграть за 1 ход, если B запишет любое число от 5 до 9. Чтобы получить такую ситуацию, Π достаточно записать число 4 — он может это сделать одним ходом.

2. Не повторяйся! (4 мин)

Записано число 6. Два игрока по очереди пишут новое число, увеличивая записанное перед этим на 1 или деля его на 2 (если число было четным). Проигрывает тот, кто напишет число, которое уже было записано ранее. У кого из двух игроков есть выигрышная стратегия?

Подсказка

Для каких чисел, записанных на доске, у игрока имеется только один вариант очередного хода?

Решение

Пусть П первым ходом поделит свое число на 2, получится 3. Число нечетное, и В придется прибавить к нему единицу. Получится 4. Дальше П прибавляет к числу 1, и остается число 5. Число нечетное, и В придется прибавить к нему единицу, получится 6, а такое число уже было на доске.

Запись на доске и в рабочей тетради

Стратегия Π : первым ходом записать число 3, а затем всегда добавлять по 1.

Обоснование стратегии:

 $\Pi: 6: 2=3$

B: 3 + 1 = 4 (единственный ход)

 $\Pi: 4 + 1 = 5$

B: 5 + 1 = 6 (единственный ход, проигрыш)

Ответ: у первого игрока.

Путь к решению

Можно постараться оставить после своего хода число, из которого за 1 ход получаются только уже записанные числа (например, из 5 можно получить только 6).

Замечание

В этой задаче есть и другие подходящие стратегии для Пети.

3. Сотня (4 мин)

Записано число 100. Двое по очереди пишут новое число, деля записанное перед этим на 2, 5 или 10 (если число делится нацело). Проигрывает тот, кто не может сделать ход. У кого есть выигрышная стратегия?

Подсказка

Игрок, который оставит сопернику после своего хода число 4, выигрывает. Есть ли еще такие «хорошие» позиции в игре?

Решение

 Π первым ходом может получить числа 50, 20 или 10. Тогда В своим ходом запишет 25, 4 или 1 соответственно. Если В запишет число 1, то Петя проиграет. Если осталось число 25, то Π сможет записать только число 5. Тогда В поделит его на 5, и останется число 1, а значит Π проиграет. Если осталось число 4, то Π сможет записать только число 2. Тогда В поделит его на 2, и останется число 1, а значит Π проиграет.

Запись на доске и в рабочей тетради

Стратегия В: оставить после своего хода на доске одно из чисел 25, 4, 1.

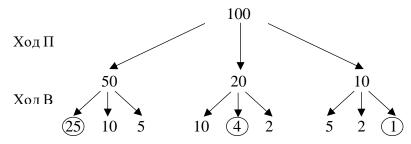
Обоснование стратегии:

 Π : 100 : (2, 5, 10) = (50, 20, 10)

ІІступень. Занятие 19. Строй стратегию!

B: (50, 20, 10) : (2, 5, 10) = (25, 4, 1)

Если осталось число 1, Петя проиграл. Если нет:


 Π : (25, 4): (5, 2) = (5, 2)

B: (5, 2): (5, 2) = 1 (Петя проиграл)

Ответ: у второго игрока.

Путь к решению

Нарисуем дерево возможностей для первых двух ходов.

Приведем выигрышную стратегию для В. Для каждой ветки обведем в кружок то число, которое будет получать В. Если после его хода останется число 25, то П будет вынужден поделить его на 5, и В выиграет следующим ходом. Если после его хода останется число 4, то П будет вынужден поделить его на 2, и В выиграет.

4*. Хитрые сливы (5 мин)

В корзине лежат 10 слив. Двое по очереди достают из нее сливы. За один раз можно достать 1, 2 или 3 сливы. Выигрывает тот игрок, кто достанет последнюю сливу. У кого есть выигрышная стратегия?

Подсказка

Объясни, почему игрок, оставивший после своего хода сопернику 4 сливы, может выиграть, какой бы ход ни сделал соперник. Есть ли еще такие «хорошие» позиции в игре?

Решение

Пусть П первым ходом возьмет 2 сливы, тем самым оставив В 8 слив. Тогда после хода В может остаться 7, 6 или 5 слив. Тогда П может забрать 3, 2 или 1 сливу так, чтобы В осталось 4 сливы. Как было разобрано в примере, Петя в этой ситуации выигрывает.

Запись на доске и в рабочей тетради

Стратегия Π : уменьшать число слив до числа, кратного 4.

Обоснование стратегии:

 $\Pi: 10 - 2 = 8$

B: 8 - (1, 2, 3) = (7, 6, 5)

 Π : (7, 6, 5) – (3, 2, 1) = 4

B: 4 - (1, 2, 3) = (3, 2, 1)

 Π : (3, 2, 1) – (3, 2, 1) = 0 (выигрыш)

Ответ: у первого игрока.

Путь к решению

Выигрыш Π будет обеспечен, если перед последним его ходом останется 4 сливы. Чтобы получилась такая ситуация, Π достаточно оставить после предыдущего хода 4+4=8 слив.

Тренировочные задания

1т. Сложение

Записано число 1. Двое по очереди пишут новое число, увеличивая записанное перед этим на 1, 2, 3, 4 или 5. Выигрывает тот, кто напишет число 12. У кого есть выигрышная стратегия?

Решение

Пусть Π своим первым ходом прибавит к числу на доске 5. Сумма равна 6. После хода B на доске может оказаться любое число от 7 до 11 включительно, а значит, Π сможет добавить 5, 4, 3, 2 или 1 и выиграть.

Запись на доске и в рабочей тетради

Стратегия Π : первым ходом записать число 6, а дальше дополнить число, записанное B, до 12 Обоснование стратегии:

$$\Pi: 1 + 5 = 6$$

B:
$$6 + (1, 2, 3, 4, 5) = (7, 8, 9, 10, 11)$$

$$\Pi$$
: (7, 8, 9, 10, 11) + (5, 4, 3, 2, 1) = 12 (выигрыш)

Ответ: у первого игрока.

Путь к решению

П сможет выиграть за 1 ход, если В запишет любое число от 7 до 11. Чтобы получить такую ситуацию, П достаточно записать число 6 — он может это сделать одним ходом.

2т. Не повторяйся!

Записано число 10. Двое по очереди пишут новое число, увеличивая записанное перед этим на 1 или деля его на 2 (если оно четное). Проигрывает тот из игроков, кто напишет число, которое уже было записано ранее. У кого есть выигрышная стратегия?

Решение

Пусть П первым ходом поделит число на 2, получится 5. В будет обязан прибавить к числу 1, получится 6. Теперь П добавляет 1, получается 7. В обязан прибавить 1, получается 8. П прибавляет 1, и получается число 9. В должен прибавить 1 и написать число 10, которое уже было на доске.

Запись на доске и в рабочей тетради

Стратегия Π : первым ходом записать число 5, а затем всегда добавлять по 1.

Обоснование стратегии:

$$\Pi: 10: 2=5$$

$$B: 5 + 1 = 6$$
 (единственный ход)

$$\Pi$$
: 6 + 1 = 7

$$B: 7 + 1 = 8$$
 (единственный ход)

$$\Pi: 8 + 1 = 9$$

$$B: 9 + 1 = 10$$
 (единственный ход, проигрыш)

Ответ: у первого игрока.

Путь к решению

ІІступень. Занятие 19. Строй стратегию!

Можно постараться оставить после своего хода число, из которого за 1 ход получаются только уже записанные числа (например, из 9 можно получить только 10).

Замечание

Есть и другие варианты стратегии для первого игрока.

3т. Раздели и выиграй!

Записано число 64. Двое по очереди пишут новое число, деля записанное перед этим на 2 или 4 (если делится нацело). Проигрывает тот, кто запишет 1. У кого есть выигрышная стратегия?

Решение

Пусть Π запишет число 16, тогда B придется записать либо число 8, либо число 4. Тогда Π следующим своим ходом запишет число 2, и у B придется записать число 1, а значит Π выиграет.

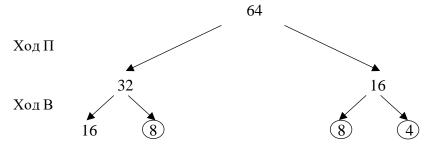
Запись на доске и в рабочей тетради

Стратегия Π : первым ходом поделить число на 4, оставляя сопернику 16, а после следующего своего хода оставить 2.

Обоснование стратегии:

 $\Pi: 64: 4=16$

B: 16:(2,4)=(8,4)


 Π : (8, 4): (2, 4) = 2

B: 2: 2 = 1 (единственный ход; проигрыш)

Ответ: у первого игрока.

Путь к решению

Нарисуем дерево возможностей для первых двух ходов.

Если оставить сопернику число 2, то он проиграет. Число 2 можно получить за один ход как из 8 (деля на число 4), так и из 4 (деля на 2). Значит, если П первым ходом оставит 16, то он гарантирует себе победу.

4т*. Хитрые сливы

В корзине лежат 12 слив. Двое по очереди достают из нее сливы. За один раз можно достать 1, 2 или 3 сливы. Выигрывает тот игрок, кто достанет последнюю сливу. У кого есть выигрышная стратегия?

Решение

П первым ходом может взять 1, 2 или 3 сливы, оставив 11, 10 или 9 слив. Тогда В берет 3, 2 или 1 сливу так, чтобы оставить сопернику 8 слив. В силу решения задачи №4* в такой ситуации П проигрывает.

ІІступень. Занятие 19. Строй стратегию!

Запись на доске и в рабочей тетради

Стратегия В: уменьшать число слив до числа, кратного 4.

Обоснование стратегии:

$$\Pi$$
: 12 – (1, 2, 3) = (11, 10, 9)

B:
$$(11, 10, 9) - (3, 2, 1) = 8$$

$$\Pi$$
: 8 – (1, 2, 3) = (7, 6, 5)

B:
$$(7, 6, 5) - (3, 2, 1) = 4$$

$$\Pi$$
: 4 – (1, 2, 3) = (3, 2, 1)

$$B: (3, 2, 1) - (3, 2, 1) = 0$$
 (выигрыш)

Ответ: у второго игрока.

Путь к решению

Выигрыш В будет обеспечен, если перед последним его ходом останется 4 сливы. Чтобы получилась такая ситуация, В достаточно оставить после предыдущего хода 4 + 4 = 8 слив.

Дополнительные задания

5. Игра-шутка

Есть две кучки конфет: в одной 10 конфет, а в другой — 20. Два игрока ходят по очереди. За один ход можно разделить любую кучку на две меньшие (ломать конфеты нельзя) Проигрывает тот из игроков, кто не может сделать ход. У кого есть выигрышная стратегия?

Подсказка

Какая позиция будет в игре, когда у игроков не будет хода? Сколько всего кучек конфет получится?

Решение

Игрок не может сделать ход, когда все конфеты уже поделены на кучки по 1. За каждый ход количество кучек увеличивается на 1. Изначально было 2 кучки, в конце будет 30 кучек (по 1 конфете). Значит, всего будет сделано 30 - 2 = 28 ходов. Тогда последний ход сделает второй игрок — Вася (он делает четные ходы).

Примечание

Как можно заметить, результат игры не зависит от того, как именно ходят игроки.

Ответ: у второго игрока.