ИГРА 2 «Плюс 5 минус 2»

Учебное содержание

Предметные цели

1. Тренировать знания и умения, полученные на занятиях №№5 - 8 «Математического театра».

Задания и решения1

Задача **1**

Сколько решений имеет ребус $\ddot{H}O + \ddot{H}O = O\ddot{H}$?

Решение

Заметим, что O + O = ...Й, а значит \ddot{I} — четная цифра. Так как сумма $\ddot{I}O + \ddot{I}O$ двузначная, то \ddot{I} < 5. Тогда \ddot{I} может равняться только 2 или 4 (\ddot{I} не может быть равно 0, так как с нуля число начинаться не может).

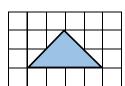
- 1) Если $\ddot{\mathbf{H}} = 2$, то $\mathbf{O} = 1$ или $\mathbf{O} = 6$. Проверим: 21 + 21 = 12 (неверно), 16 + 16 = 62 (неверно).
- 2) Если $\ddot{\mathbf{H}} = 4$, то $\mathbf{O} = 2$ или $\mathbf{O} = 7$. Проверим: 42 + 42 = 24 (неверно), 47 + 47 = 74 (неверно).

Ни один случай не подходит, значит у ребуса нет решений.

Ответ. 0 решений.

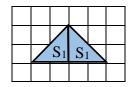
Задача 2

Чтобы попасть по лестнице с первого этажа на второй, нужно пройти 14 ступенек. Сколько ступенек нужно пройти, чтобы попасть с первого этажа на пятый? Между соседними этажами одинаковое количество ступенек.

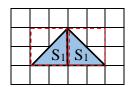

Решение.

Чтобы попасть с 1 этажа на 5, нам понадобится пройти 4 пролета. Тогда всего необходимо пройти $4 \cdot 14 = 56$ ст.

Ответ. 56 ступенек.


Задача 3

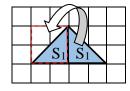
На клетчатом листе бумаге закрасили треугольник. Найдите его площадь в клетках.



Решение.

Разделим треугольник на две равные части, как показано на рисунке:

Заметим теперь, что каждый из получившихся треугольников — это половинка квадрата (см. рисунок):


1-й способ

1)
$$(2 \cdot 2) : 2 = 2$$
 (кл.) — S_1

$$2) 2 + 2 = 4$$
 (кл.) — S треугольника

2-й способ

Заметим, что из двух полученных треугольников можно составить квадрат из 4 клеток (см. рисунок), а значит площадь исходного треугольника тоже 4 клетки.

Ответ. 4 клетки

Задача 4

В июле некоторого года было четыре среды и четыре субботы. Каким днем недели было 20-е число этого месяца?

Решение.

В июле всегда есть четыре полных недели. Всего в июле 31 день, и в неполной неделе остаются три дня: 29, 30 и 31 июля. Среди этих дней нет ни сред, ни суббот, а значит это воскресенье, понедельник и вторник:

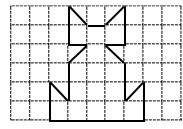
Тогда 29 июля – воскресенье, и 22 июля тоже было воскресенье, а значит 20 июля была пятница.

Ответ. Пятница.

Задача 5

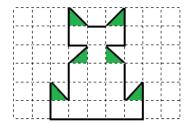
1 января родители подарили Яше копилку и, начиная со следующего дня, каждый день клали туда по 10 рублей. 20 февраля, в Яшин день рождения, копилку не пополняли, а разбили и достали из нее все накопленные деньги. Сколько денег было в копилке?

Решение.


В январе родители Яши клали деньги в копилку 31 - 1 = 30 раз (все дни кроме 1-го января). В феврале родители положили деньги 20 - 1 = 19 раз (все дни кроме 20 февраля). Таким образом всего родители пополнили копилку 30 + 19 = 49 раз.

 $49 \cdot 10 = 490$ (рублей) — было в копилке

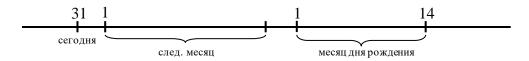
Ответ. 490 рублей.


Задача 6

На клетчатом листке бумаги нарисована кошка. Какова площадь этого рисунка (в клетках)?

Решение.

Разделим фигуру на клеточки и прямоугольные треугольники. Получились 3 пары прямоугольных треугольников (закрашены зелёным цветом). Каждая пара имеет суммарную площадь 1. Всю остальную площадь занимают квадраты площади 1. Всего их 15 штук. Значит вся площадь фигуры: $3 \cdot 1 + 15 \cdot 1 = 18$ (полных клеток).


Ответ. 18 клеток.

Задача 7

Сегодня, 31-го числа некоторого месяца, в субботу, Ваня понял, что завтра наступит новый месяц, а в месяце, следующем за ним, у Вани 14-го числа день рождения. Ваня заметил, что его день рождения тоже выпадает на субботу. В каком месяце у Вани день рождения?

Решение.

Нарисуем схему:

Заметим, что в месяце, когда у Вани день рождения, от 1 числа до дня рождения Вани — 14-го числа — проходит ровно две полных недели. Значит последнее число предыдущего месяца — тоже суббота. Поскольку сегодня тоже суббота, а завтра — 1-е число нового месяца, то от 1-го числа этого месяца до последнего проходит несколько полных недель. Значит количество дней в этом месяце делится на 7. Тогда этот месяц февраль, а значит день рождения Вани — в марте.

Ответ. В марте.

Задача 8

Сколько решений имеет ребус KOHb + KOT = 2022? ЛЕС + ЛЕТО

Решение.

Если K > 1, то $KOHb + KOT = 2 _ _ + 2 _ _ ,$ что больше чем 2022. Значит K = 1.

Посмотрим на разряд сотен: O + 1 = 10 либо O + 1 = 9, а в предыдущем разряде был переход через десяток.

<u>Случай 1: O + 1 = 10</u>. Тогда O = 9, а в предыдущем разряде нет перехода через десяток. Но H + O = H + 9 = ...2 (и возможно был переход через десяток в разряде единиц), а значит переход через десяток должен быть. Этот случай не подходит.

<u>Случай 2: O + 1 = 9</u>. Тогда O = 8 и в предыдущем разряде есть переход через десяток. Тогда H + O = 12 или H + O + 1 = 12.

- 1) Если H+O=12, то H=4, а в разряде единиц нет перехода через десяток. Так как b и T не могут равняться 1, то либо b=0, T=2, либо b=2, T=0. Получаем два решения: 1840+182=2022 и 1842+180=2022.
- 2) Если H + O + 1 = 12, то H = 3, а в разряде единиц есть переход через десяток. Тогда b + T = 12. Так как цифры 1, 3 и 8 уже заняты, то остаются варианты b = 5, T = 7 и b = 7, T = 5. Получаем два решения: 1835 + 187 = 2022 и 1837 + 185 = 2022.

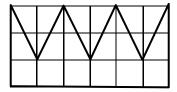
Таким образом, всего ребус имеет 4 решения.

Ответ. 4 решения.

Задача 9

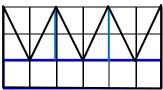
У Оли есть длинная белая лента с узором из поперечных красных, синих и зеленых полосок (на рисунке приведен пример расположения нескольких полосок). Если Оля разрежет ленту по красным полоскам, то та распадется на 10 частей, если по синим — то на 15 частей, а если по зеленым — то на 20 частей. На сколько частей распадется лента, если ее разрезать по всем полоскам сразу? (Полоски разных цветов не совпадают.)

Решение


Рассмотрим сначала только полоски одного цвета, например красные. Тогда полоски — это линии разреза. Количество частей на 1 больше, чем разрезов, поэтому всего 10 - 1 = 9 красных полосок. Аналогично всего 15 - 1 = 14 синих и 20 - 1 = 19 зеленых полосок.

Тогда всего на ленте 9 + 14 + 19 = 42 полоски, и при разрезании по ним получится 42 + 1 = 43 части.

Ответ: на 43 части.


Задача 10

Вычислите площадь «короны» (в клетках).

Решение.

Проведем горизонтальную линию так, чтобы отделить прямоугольник 6×1 , а также вертикальные линии, чтобы разделить треугольники на прямоугольные:

Площадь фигуры равна: $6 \cdot 1 + (2 \cdot 1 : 2) \cdot 6 = 6 + 6 = 12$ (кл.)

Ответ. 12 клеток.

Задача **11**

Найди какое-нибудь решение ребуса: 3 · XA = УХА.

Решение.

Подходит единственный вариант: $3 \cdot 50 = 150$ (У = 1, X = 5, A = 0).

Путь к решению.

1-й способ (через сложение).

Заметим, что $3 \cdot XA = XA + XA + XA$. Тогда из обеих частей равенства можно вычесть XA:

$$XA + XA = Y00$$

Это возможно только при A = 0 или A = 5.

1 случай (A = 0). Запишем ребус в столбик:

1

Сумма X и X заканчивается на 0, при этом разные буквы обозначают разные цифры. Значит, в этом случае подходит только X = 5, Y = 1, A = 0.

2 случай (А = 5). В этом случае будет переход через разряд в разряд десятков:

Но сумма X и X — четное число, и при сложении с 1 получится нечетное число, которое не может заканчиваться цифрой 0. Значит, случай A = 5 не подходит.

2-й способ (через умножение).

Рассмотрим букву А. Из условия известно, что $3\cdot A$ оканчивается на А. Тогда А по таблице умножения — либо 0, либо 5.

<u>1 случай (A = 0).</u> Если A = 0, получаем ребус: $3 \cdot X0 = YX0$. Запишем в столбик:

$$\begin{array}{cccc} \times & X & 0 \\ & & 3 \\ \hline Y & X & 0 \end{array}$$

Тогда $X \cdot 3$ оканчивается на X. Тогда X — либо 0, либо 5, но так как A = 0, а разные буквы обозначают разные цифры, то X = 5. Тогда $3 \cdot XA = 3 \cdot 50 = 150$, то есть буква Y обозначает 1. Получаем решение: Y = 1, X = 5, A = 0.

2 случай (A = 5). Если A = 5, получаем ребус: $3 \cdot X5 = YX5$. Запишем в столбик:

$$\times \begin{array}{c} \begin{array}{c} 1 \\ X \\ 5 \\ 3 \end{array}$$

Тогда из разряда единиц в разряд десятков переходит единица и $3 \cdot X + 1$ оканчивается на X. Но 3X + 1 и X имеют разную чётность, а значит не могут оканчиваться на одно и то же число. Значит данный случай невозможен.

Получаем единственное решение: Y = 1, X = 5, A = 0.

Ответ.
$$3 \cdot 50 = 150 \text{ (Y} = 1, X = 5, A = 0).$$

Задача **12**

Путешественница Даша работает четыре дня в неделю – в понедельник, вторник, среду и пятницу. Она хочет улететь на море на 25 дней так, но у неё осталось всего 13 дней отпуска, в которые она может пропустить работу. В какой день недели Даше стоит вылететь на море?

Решение.

За 25 дней Даша пропустит 3 полные недели и 4 подряд идущих дня. В трех полных неделях всего $3 \cdot 4 = 12$ рабочих дней. Значит на оставшиеся 4 подряд идущих дня должен выпасть всего 13 - 12 = 1 рабочий день. Такое возможно только если это дни: четверг, пятница,

суббота, воскресенье. Таким образом 22-й день поездки – это четверг, а значит и 1-й день тоже должен быть четверг.

Ответ. В четверг.

Задача **13**

Из 100-страничной книги выпал кусок, первая страница которого имеет номер 43, а номер последней начинается с 8 и делится на 3. Сколько страниц осталось в книге?

Решение.

Рассмотрим возможные номера последней страницы. Так как всего в книге 100 страниц, то номер двузначный, начинается на 8 и делится на 3. Тогда возможные варианты номера последней страницы: 81, 84, 87. Но последняя страница выпавшего куска всегда имеет чётный номер. Значит номер последней страницы — 84.

Тогда всегда из книги выпало 84 - 42 = 42 (стр.), а значит осталось в книге 100 - 42 = 58 (стр.). **Ответ.** 58 страниц.

Задача 14

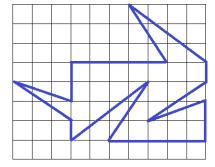
Летом 2022 года Катя праздновала свой день рождения в понедельник. В каком году она в следующий раз отпразднует день рождения в понедельник?

Решение.

Так как оба этих дня рождения приходятся на понедельник, то от одного из них до другого проходит некоторое число полных недель.

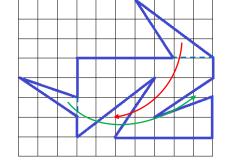
- 1) 365:7=52 (ост. 1) в невисокосном году 52 полные недели и остается еще 1 день
- 2) 366: 7 = 52 (ост. 1) в високосном году 52 полные недели и остается еще 2 дня

Так как «лишний» день в високосном году — в феврале, а день рождения у Кати — летом, то в каждый невисокосный год день недели ее дня рождения сдвигается на 1, а каждый високосный год — на 2 по сравнению с предыдущим годом. Составим таблицу дней недели, в которые у Кати день рождения в ближайшие года:


2022	2023	2024	2025	2026	2027	2028	2029	2030	2031	2032
ПН	BT	ЧТ	ПТ	сб	вс	BT	ср	ЧТ	ПТ	ПН

Таким образом, ближайший день рождения Кати, который придется на понедельник, будет в 2032 году.

Ответ. В 2032 году.


Задача 15

Вычисли площадь фигуры (в клетках).

Решение

Треугольный вырез внизу фигуры совпадает по форме треугольным выступом вверху фигуры, а треугольный вырез справа — с треугольным выступом слева. Если отрезать выступы и вставить их в вырезы, получится прямоугольник 4×7 .

$$4 \cdot 7 = 28$$
 (кл.)

Ответ: 28 клеток.

Задача 16

Найди все решения ребуса: KOT + KOT = POTA, если разные цифры обозначают разные буквы, а одинаковые цифры – одинаковые буквы.

Решение.

Запишем ребус в столбик:

Так как РОТА — сумма двух трёхзначных чисел, то P = 1, а K > 4. Рассмотрим два случая (T + T < 9) и T + T > 9).

<u>1 случай (T + T < 9).</u> Если T + T < 9, то в разряде единиц нет перехода через десяток. Тогда О + О оканчивается на T, а значит T — чётная цифра. При этом T < 5. Тогда T = $\{0, 2, 4\}$, A = $\{0, 4, 8\}$.

- 1) Если T = 0, то A = 0, что невозможно (разные буквы должны обозначать разные цифры).
- 2) Если T = 2, то A = 2. Тогда $O = \{1, 6\}$. Если O = 1, то K + K оканчивается на 1, что невозможно в силу четности. Если O = 6, то в разряде десятков есть переход через десяток, но тогда K + K + 1 оканчивается на нечётную цифру, а значит не может оканчиваться на 6. Значит такое невозможно.
- 3) Если T=4, то A=8. Тогда $O=\{2,7\}$. Если O=7, то в разряде десятков есть переход через десяток, тогда K+K+1 оканчивается на 7, а значит K=8, но это невозможно, так как получается A=K=8. Тогда остаётся вариант O=2, откуда следует, что K=6. Таким образом получаем решение: P=1, K=6, O=2, T=4, A=8.

 $\underline{2}$ случай (T+T>9). Если T+T>9, то в разряде единиц есть переход через десяток. Тогда O+1 оканчивается на T, а значит T — нечётное число. Тогда $T=\{5,7,9\}$.

- 1) Если T = 5, то A = 0, а $O = \{2,7\}$. Если O = 2, то K = 6, если O = 7, то K = 8. Получаем два решения: P = 1, K = 6, O = 2, T = 5, A = 0 и P = 1, K = 8, O = 7, T = 5, A = 0.
- 2) Если T = 7, то A = 4, а $O = \{3, 8\}$. Если O = 3, то K + K оканчивается на 3, что невозможно. Если O = 8, то K + K + 1 оканчивается на 8, что невозможно.
- 3) Если T=9, то A=8, а $O=\{4,9\}$. Но O не может равняться 9, так как T=9. Остаётся вариант O=4. Тогда K+K оканчивается на 4 и отсюда K=7. Получаем решение: P=1, K=7, O=4, T=9, A=8.

Other. 624 + 624 = 1248; 625 + 625 = 1250; 875 + 875 = 1750; 749 + 749 = 1498.